Forecast Using Multiple Models by MAQ Software image

Forecast Using Multiple Models by MAQ Software

por MAQ LLC

(10 clasificaciones)
Descargar muestraInstrucciones

Test time series models to forecast future values based on historical data.​

Forecast Using Multiple Models by MAQ Software lets you implement four different forecasting models to learn from historical data and predict future values. The forecasting models include Linear Regression, ARIMA, Exponential Smoothing, and Neural Network.

This visual is excellent for forecasting budgets, sales, demand, or inventory.

R package dependencies (auto-installed): forecast, plotly, zoo, lubridate.

Key features:

  • Use four different forecasting methods/models.

  • Manually adjust the parameters of the learning model.

  • Supports a wide range of date and time formats.

  • Forecast options include the choice of algorithm, showing or hiding confidence intervals, deciding on the split point, and applying data transformation.

For any feature requests or questions about this visual, please send an e-mail to our team at support@maqsoftware.com​.

Capacidades visuales

Cuando se usa este objeto visual,
  • Puede acceder a servicios o recursos externos.

De un vistazo

Snapshot 1 of Forecast Using Multiple Models by MAQ Software
detail page video overlay image
Snapshot 2 of Forecast Using Multiple Models by MAQ Software
Snapshot 3 of Forecast Using Multiple Models by MAQ Software
Snapshot 4 of Forecast Using Multiple Models by MAQ Software
Snapshot 5 of Forecast Using Multiple Models by MAQ Software
Al obtener este producto, concede permiso a Microsoft para usar o compartir la información de mi cuenta para que el proveedor pueda ponerse en contacto conmigo con respecto a este producto y productos relacionados. Acepto los términos de uso y la directiva de privacidad del proveedor y entiendo que los derechos para usar este producto no proceden de Microsoft, a menos que Microsoft sea el proveedor. El uso de AppSource se rige por términos y privacidad independientes.