https://store-images.s-microsoft.com/image/apps.65072.aa63eb27-0acb-4680-8658-f4b4eeda0c6b.e419a614-ea4e-402e-94e7-8c04686ba07c.09bc0137-b1d3-4ee9-bdef-c56540b9d021

Microsoft Fabric Data Engineering Custom Training - 3 Days

Santor Technologies

Hands-on Fabric workshop covering architecture, data engineering, Git integration, and real-time sync.

This customizable workshop focuses on building efficient, scalable data solutions using Microsoft Fabric for your business needs. It covers the fundamentals of the Fabric environment, lakehouse architecture, and Apache Spark. Participants learn to create data pipelines, leverage notebooks, perform real-time data mirroring, and integrate with Azure DevOps using Git.

Day 1: Microsoft Fabric Environment

  • Module 1: Introduction to Microsoft Fabric
  • Module 2: One Lake and Direct Lake
  • Module 3: Lakehouse architectures(medallion) Bronze/ Silver/Gold Layers
  • Module 4: Data Flows Gen2
  • Module 5: Apache Spark

Day 2: Data Engineering in Microsoft Fabric

  • Module 6: Fabric Notebooks
  • Module 7: Deep Dive on Lakehouses
  • Module 8: Direct Lake
  • Module 9: Building Efficient Data Pipelines
  • Module 10: Loading Data Flows Gen2/Power Query into Fabric Lake house

Day 3: Advanced Data Engineering in Microsoft Fabric

  • Module 11: Data Mirroring (Real-time data replication)
  • Module 12: Query Insights and Optimization
  • Module 13: Data Engineering Best Practices
  • Module 14: Fabric GIT Integration with Azure Devops

Why choose Santor?

  • Microsoft MVPs and Microsoft Certified Trainers with real-world implementation experience.
  • Hosts Microsoft-partnered workshops like Fabric Analyst in a Day (FAIAD).
  • Delivers monthly webinars, blog content, and other insights as an active thought leader.

Hiter pregled

https://store-images.s-microsoft.com/image/apps.24146.aa63eb27-0acb-4680-8658-f4b4eeda0c6b.e419a614-ea4e-402e-94e7-8c04686ba07c.fc5a3ebf-ba5f-47e1-9367-817efdda6290
https://store-images.s-microsoft.com/image/apps.22985.aa63eb27-0acb-4680-8658-f4b4eeda0c6b.e419a614-ea4e-402e-94e7-8c04686ba07c.67aed4b3-5082-49a0-882c-622e989fedde