Forecast Using Multiple Models by MAQ Software image

Forecast Using Multiple Models by MAQ Software

bởi MAQ LLC

(10 xếp loại)
Tải xuống mẫuHướng dẫn

Test time series models to forecast future values based on historical data.​

Forecast Using Multiple Models by MAQ Software lets you implement four different forecasting models to learn from historical data and predict future values. The forecasting models include Linear Regression, ARIMA, Exponential Smoothing, and Neural Network.

This visual is excellent for forecasting budgets, sales, demand, or inventory.

R package dependencies (auto-installed): forecast, plotly, zoo, lubridate.

Key features:

  • Use four different forecasting methods/models.

  • Manually adjust the parameters of the learning model.

  • Supports a wide range of date and time formats.

  • Forecast options include the choice of algorithm, showing or hiding confidence intervals, deciding on the split point, and applying data transformation.

For any feature requests or questions about this visual, please send an e-mail to our team at support@maqsoftware.com​.

Các chức năng trực quan

Khi được sử dụng, hình ảnh này
  • Có thể truy nhập các dịch vụ hoặc tài nguyên bên ngoài

Xem nhanh

Snapshot 1 of Forecast Using Multiple Models by MAQ Software
detail page video overlay image
Snapshot 2 of Forecast Using Multiple Models by MAQ Software
Snapshot 3 of Forecast Using Multiple Models by MAQ Software
Snapshot 4 of Forecast Using Multiple Models by MAQ Software
Snapshot 5 of Forecast Using Multiple Models by MAQ Software
Snapshot 6 of Forecast Using Multiple Models by MAQ Software
By getting this product, I give Microsoft permission to use or share my account information so that the provider can contact me regarding this product and related products. I agree to the provider's điều khoản sử dụng and chính sách về quyền riêng tư and understand that the rights to use this product do not come from Microsoft, unless Microsoft is the provider. Use of điều khoản is governed by separate quyền riêng tư and {4}.